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Abstract:
In the preceding units we have studied the motion of individual particles
and some of the important interactions between them. In the next few
units we shall explore some of the general implications of our basic theo-
retical principles and shall thus develop methods useful for dealing with
many important practical applications. In particular, we shall devote the
present unit to extend our understanding of the motion of single parti-
cles in order to deal with systems consisting of many particles. (Unless
explicitly stated otherwise, we shall again describe all motions relative to
some convenient inertial frame.)
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SECT.

A PREDICTIVE POWER OF MECHANICS

Our study of “mechanics” (the science of motion) has been based
upon these fundamental principles: (1) A theory of motion summarized

by the equation of motion m~a = ~F . (2) Force laws which specify how
the interaction between particles depends on their properties and relative
positions. To assess the practical utility of these principles, we now ask
this question: How effective are these principles for predicting the motion
of a system consisting of many particles?

Consider an isolated system of N particles having known properties
(e.g., known masses and charges) and interacting with each other by forces
described by known force laws. (For example, consider the solar system
consisting of the sun, the earth, and the other planets which interact
by gravitational forces.) Suppose that we know the position vector ~r0

and velocity ~v0 of every particle at some instant of time t0. Using the
equation of motion m~a = ~F , what predictions can we then make about
the positions and velocities of the particles at any other time? To answer
this question, we shall first try to answer the following simpler question:
What predictions can we make about the positions and velocities of the
particles at a slightly different time tc, such that the difference dt = tc−t0
is small enough?

Let us begin by exploring what information we can deduce by starting
from the known velocity ~v0 of each particle at the time t0. (1) Since
the velocity ~v0 is defined as ~v0 = d~r/dt, we can find the displacement
d~r = ~v0dt of the particle during the time interval dt. (2) Since d~r = ~rc−~r0,
we can then use the known position vector ~r0 of the particle at the time
t0 to find its new position vector ~rc = ~r0 + d~r at the time tc.

What information can we deduce by starting from the known position
of each particle at the time t0? (1) Since we know the positions and
properties of the particles, we can use the known force laws to find at
the time t0 the force on a particle P due to any other particle. (2) By
adding the force on P due to all the other particles, we can then find at
the time t0 the total force ~F0 on P . (3) Since we know the mass m of the

particle P we can then use the equation of motion m~a = ~F to find the
acceleration ~a0 = ~F0/m of P at the time t0. (4) Since the acceleration ~a0

is defined as ~a0 = d~v/dt, we can then find the change d~v = ~a0dt of the
velocity of P during the time interval dt. (5) Since d~v = ~vc − ~v0, we can
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then use the known velocity ~v0 of P at the time t0 to find its new velocity
~vc = ~v0 + d~v at the time tc.

Our arguments in the preceding two paragraphs lead thus to the
following important conclusion:

If we know the positions and velocities of the parti-
cles in an isolated system at any time t0, we can use
the principles of mechanics to find their positions and
velocities at a slightly different time t0 + dt.

(A-1)

(Note that the time difference dt may be positive or negative, i.e., the
time tc may be later or earlier than the original time t0.)

To shorten our wording, let us introduce the word “state” defined as
follows:

Def. State of a system: A specification of the posi-
tions and velocities of all particles in the system.

(A-2)

Then Rule (A-1) asserts simply that, if we know the state of an
isolated system at any time, we can predict the state of the system at a
slightly different time. Furthermore, we can use this method of prediction
repetitively. For example, suppose that we know the state of the system
at some time t0 and that the time interval dt = 0.1 second is small enough.
Using this knowledge, we can predict the state of the system 0.1 second
later, i.e., at the time t0 + 0.1 second. Then we can, in turn, use this
knowledge to predict the state of the system 0.1 second later, i.e., at the
time t0+0.2 second. Then we can use this knowledge to predict the state
of the system 0.1 second later, i.e., at the time t0+0.3 second. Proceeding
in this way repetitively, we can continue to make successive predictions
until we arrive at predictions 10 seconds after t0, or 10 hours after t0, or
even 100 years after t0. Thus we see that our previous conclusion, Rule
(A-1), implies the following more far-reaching conclusion:

If we know the positions and velocities of the parti-
cles in an isolated system at any time t0, we can use
the principles of mechanics to find their positions and
velocities at any other time.

(A-3)

In other words, if we know the positions and velocities of any isolated set
of particles at any instant, we can predict the entire future history (and
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also the entire past history) of the motion of these particles!

DISCUSSION

The preceding conclusion shows that the theory of motion, based on
the apparently innocent equation of motion m~a = ~F , has enormous pre-
dictive power. Indeed, the conclusion implies that our universe behaves
with the perfect predictability and regularity of a giant clockwork. Hence
we see why Newton’s formulation of the theory of motion was an impres-
sive achievement which has had tremendous influence on scientific and
philosophical thought.

The predictive power of the theory can be realized in practice. The
many successive calculations required by our method of prediction are
merely repetitive additions and multiplications, elementary operations
which electronic computers can carry out with great speed. Further-
more, such calculations can often be simplified or circumvented by suitable
mathematical methods. As a result, the motion of spaceships, planets, or
other astronomical bodies can be predicted with impressive precision.

Newton’s theory of motion can be applied successfully to discuss and
predict an enormous range of situations of practical interest, both good
and evil. For example, it is used to design cars, ships, planes, buildings,
bridges, and ballistic missiles; to study the motion of liquids and gases
(e.g., the flow of blood in arteries or the motion of the air in the atmo-
sphere); and to design instruments such as the electron microscope. Thus
the successful domain of application of the theory ranges from astronomi-
cal objects with masses as large as 1030 kilogram to atomic particles with
masses as small as 10−30 kilogram.

Despite its enormous range of applicability, the theory has some lim-
itations because it is based on assumptions which are not valid under
some extreme conditions. For example, some basic assumptions of the
theory are not valid when particles move so rapidly that their speed is
comparable to the speed of light (3 × 108meter/second). To deal with
such conditions, the Newtonian theory of motion must be extended and
becomes subsumed under a more general theory, Einstein’s theory of rel-
ativity. Similarly, other assumptions of the theory may not be valid when
particles are as small as atomic size (10−10meter). To deal with such
conditions, the Newtonian theory must again be extended and becomes
subsumed under a more general theory, quantum mechanics.
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Yet, even if we confine ourselves within the vast range of applicabil-
ity of the Newtonian theory with its equation of motion m~a = ~F , there
still remains the important question of how to exploit the inherent pre-
dictive power of the theory in practical situations. If we relied merely
on fast electronic computers, we could only deal with systems of limited
complexity, nor would we acquire the insights necessary for most practi-
cal prediction and design. Thus the theory becomes really useful only if
we can derive from it general relations and methods allowing us to deal
simply with complex situations. Accordingly, we shall begin in this unit
to address these questions: What general statements can we make about
systems consisting of many particles, without needing to deal with the
detailed motion of all the individual particles in such systems? Are there
quantities which vary simply or remain unchanged,despite the fact that
the positions and velocities of particles change in complicated ways?
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SECT.

B EQUATION OF MOTION OF A SYSTEM

Consider a system of interacting particles. This system may also
interact with one or more other particles which we shall call “external”
particles since they are not part of the system. (For example, the system
might consist of the links of a chain. This system may interact with
external particles, such as those in the earth and in objects to which the
chain is attached.) Can we then use the equation of motion m~a = ~F for
each particle to find an equation describing the motion of the system as
a whole, without attention to the detailed motion of each particle within
the system?

We begin by writing down the equation of motion for each of the
particles 1, 2, 3, . . . in the system. Thus

m1~a1 = (~F1,2 + . . .) + ~F1,ext (B-1)

m2~a2 = (~F2,1 + . . .) + ~F2,ext (B-2)

and so on. The parenthesis on the right side of the equation for each
particle is the sum of all “internal” forces on this particle, i.e., the sum of
all the forces due to all the other particles in the system. [For example, in
Eq. (B-1) the total internal force on particle 1 could be written in greater

detail as ~F1,2 + ~F1,3 + ~F1,4 + . . ..] The last term on the right side of the
equation for each particle is the total “external” force on the particle,
i.e., the sum of all forces on the particle due to all the external particles
(denoted by the subscript “ext”).

To obtain an equation for the system as a whole, we add the
equations of motion Eq. (B-1), Eq. (B-2), ... for all the particles in the
system. Thus we obtain

m1~a1 +m2~a2 + . . . = ~Fint + ~Fext (B-3)

where we have used the abbreviations

~Fint = ~F1,2 + ~F2,1 + . . . (B-4)

and

~Fext = ~F1,ext + ~F2,ext + . . . (B-5)

The right side of Eq. (B-3) is the “total force on the system,” i.e., the
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sum of all forces on all particles in the system. This total force is the sum
of ~Fint, the “total internal force on the system” (the sum of all internal

forces on all particles in the system) and of ~Fext, the “total external
force on the system” (the sum of all external forces on all particles in the
system). But, because of the reciprocal relation between mutual forces,
~F1,2 = −~F2,1 so that ~F1,2 + ~F2,1 = 0. Similarly, the sum of any other
pair of internal mutual forces is also zero. Hence the total internal force
~Fint = 0 so that Eq. (B-3) becomes simply:

m1~a1 +m2~a2 + . . . = ~Fext . (B-6)

We shall call Eq. (B-6) the “equation of motion of the system.” Note
that this equation, which describes the motion of the system as a whole,
does not involve any of the internal forces due to the interactions be-
tween particles in the system, but involves only the external forces due to
particles outside the system.

Example B-1: Motion of a car and trailer

Consider a car pulling a trailer up a hill. If we focus attention on
the system consisting of the car and trailer, the force on the trailer due to
the car and the force on the car due to the trailer are internal forces. The
sum of these mutual forces, i.e., the total internal force on the system, is
zero. Thus the total force on the system is simply the total external force
which is the sum of the gravitational forces on the car and the trailer
due to the earth, and of the forces on both these objects due to the road
surface.

Finding Total Internal and External Forces (Cap. 2)

B-1
An 80 kg man and his 10 kg parachute form a system of two par-
ticles. At one time during a descent, the forces on the parachute

are the gravitational force due to the earth, a force of 720N downward
due to the man, and a force of 800N upward due to the air. At this
time, the forces on the man are the gravitational force, a force due to the
parachute, and a negligible force due to the air. (a) Which of these forces
are internal forces on the system? Which of them are external forces on
the system? (b) What is the total internal force on the system? (c) What
is the total external force on the system? Use g = 10m/s2. (Answer:
105) (Suggestion: [s-10])
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B-2
A 1000 kg car and a 2000 kg truck collide at an icy intersection,
where frictional forces due to the road are negligible. At the

time of impact the forces on each vehicle are: the gravitational force, the
normal force due to the road (equal in magnitude to the gravitational
force), and an enormous horizontal force of magnitude 105 newton due
to the other vehicle. At this time, what are the magnitudes of the total
internal force and of the total external force on the system of the colliding
vehicles? (Answer: 104) (Suggestion: [s-3]) (Practice: [p-1])
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SECT.

C CENTER OF MASS

We can express the equation of motion of a system in a compact and
familiar form by defining a mass M and an acceleration ~A so as to write
Eq. (B-5) in the simple form:

M ~A = ~Fext . (C-1)

To assure that this equation is identical with Eq. (B-5), we need only
require that

M ~A = m1~a1 +m2~a2 + . . . (C-2)

Provided that this relation is satisfied, we can define M and ~A in any
convenient way. Let us then call M the “mass of the system” and define
it simply as the sum of the masses of all particles in the system.

Def. Mass of a system: M = m1 +m2 + . . . (C-3)

Then the quantity ~A is unambiguously defined as the vector such that
MA is equal to the right side of Eq. (C-2).

By introducing these definitions of M and ~A, the equation of motion
Eq. (C-1) of the system looks exactly as if it were the equation of motion

of a single particle having a mass M and an acceleration ~A. This particle
would then have a velocity ~V such that ~A = d~V /dt, and correspondingly

a position vector ~R such that ~V = d~R/dt. To be consistent with

Eq. (C-2), ~V and ~R should then be related to the velocities and position
vectors of the individual particles so that *

M~V = m1~v1 +m2~v2 + . . . (C-4)

and

M ~R = m1~r1 +m2~r2 + . . . (C-5)

* For example, if we equate the rates of change of both sides of
Eq. (C-4), M(d~V /dt) = m1(d~v1/dt)+m2(d~v2/dt)+ . . ., which

agrees with Eq. (C-1) if ~A = d~V /dt.

The position of this single equivalent particle is called the “center of
mass” (or sometimes the “center of gravity”) of the system in accordance
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with this definition:

Def.
Center of mass of a system: The point hav-
ing a position vector ~R such that M ~R = m1~r1 +
m2~r2 + . . .

(C-6)

Let us illustrate the preceding comments by considering a few es-
pecially simple systems. For example, if the system consists of only one
particle, its center of mass is just the position of this particle. The velocity
and acceleration of the center of mass are then just those of the particle
itself. If the system is uniform and symmetric (e.g., if it is a uniform
solid sphere, a basketball, or a uniform circular rod), the Def. (C-6) leads
to the result that the center of mass is simply its geometric center. The
velocity and acceleration of the center of mass are then just those of the
geometric center of the system. Finally, suppose that the system is some
composite object consisting of several particles moving together so that
each has the same velocity ~v and the same acceleration ~a. (For instance,
the composite object might be a sliding sled consisting of several pieces
of wood glued together.) Then the velocity ~V of the center of mass is just
equal to the velocity ~v of every particle in the composite object, and the
acceleration ~A of the center of mass is just equal to the acceleration ~a of
every particle in this object.

Since the motion of the center of mass is described by the equation
M ~A = ~Fext we can make this statement:

The center of mass of a system moves in the same way
as a single particle having a mass M equal to the mass
of the whole system and acted on by a force equal to
the total external force on the system.

(C-7)

By using this conclusion, we can easily visualize the motion of the center of
mass, even if the motion of the system is quite complicated. For example,
consider the motion of a twirling baton thrown by a cheerleader. If air
friction is neglected, the center of mass of the baton (i.e., the geometrical
center of the baton if it is a uniform circular rod) moves then just as
simply as a ball subject only to the gravitational force, although the ends
of the baton tumble around in a complicated way.
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1 Å (ångstrom) = 10 meter-10

0.6 Å

O O OO C

0.6 Å 1.2 Å 1.2 Å

O2 CO2

Fig. C-1.

Illustration

C-1
Finding the center of mass: To illustrate how the position of the
center of mass is found from its definition, Def. (C-6), consider the

molecules O2 and CO2. For these two systems, each particle is either an
oxygen atom, of mass 16 amu, or a carbon atom, of mass 12 amu, where
the symbol amu represents the atomic mass unit, defined as (1/12) of
the mass of the carbon atom 12C. The position vectors of the atoms in
these molecules, measured from an origin at the center of the molecule,
are shown in Fig. C-1. (a) What is the position vector ~R of the center of
mass of each molecule? (b) Where is the center of mass located relative
to the atoms in each molecule? (c) Is there always a particle located at
the center of mass? (Answer: 102) (Suggestion: [s-12])

Describing Position and Motion of the Center of Mass (Cap. 3)

C-2
Describe the position of the center of mass for these symmetric (or
very nearly symmetric) systems: the benzene molecule in Fig. C-

2, the air in a spherical soap bubble, the soap film forming the bubble, a
solution in a beaker on a chemical balance, a 200 page paperback book,
an inflated inner tube. (Answer: 108)

C-3
In problem B-1, the 80 kg man and his 10 kg parachute form a
system on which the total external force is 100N downward. The

center of mass of this system is located just above the man’s head. What
is the acceleration ~A of this center of mass? (Answer: 110)

C-4
As she passes over the bar in a high-jump, an expert athlete
bends sharply backward in a U so that her center of mass (CM)

actually passes under the bar (Fig. C-3). If the force on her due to the
air is negligible, what is the acceleration of the athlete’s center of mass as
she herself passes over the bar? (Answer: 101) (Suggestion: [s-2])
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C

H benzene

Fig. C-2.

cm

Fig. C-3.

C-5
During the collision described in problem B-2, what is the ac-
celeration of the center of mass of the system consisting of the

car and the truck? Is the acceleration of the car or the truck during the
collision the same as the acceleration of their center of mass? (Answer:
107) (Practice: [p-2])
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SECT.

D PROPERTIES OF THE MASS OF A SYSTEM

The equation of motion M ~A = ~Fext of a system allows us to use
information about ~A and ~Fext to measure the mass M of the system.
This can be done by methods analogous to those used to measure the
mass of a single particle. For example, in many cases we can use the fact
that the total gravitational force on the system is m1~g + m2~g + . . . =
(m1 +m2 + . . .)~g =M~g. It is then possible to measure this gravitational
force (and thus the mass M of the system) by comparing it with a known
force on the system. For example, we might place the system on a balance
so that its center of mass is at rest (i.e., so that ~A = 0 and thus ~Fext = 0).
Then the total gravitational force on the system must be opposite to the
measured external force exerted on the system by the balance.

The measured mass of a system provides valuable information since
the definition of the mass M of a system, Def. (C-3), implies this conclu-
sion:

Additive property of mass: The measured mass of a
system is equal to the sum of the masses of all the
particles in the system.

(D-1)

For example, suppose that a system consists ofN identical molecules, each
having a known mass m. Then the additive property of mass implies that
the mass M of the system is M = Nm so that N = M/m. Hence it is
possible to determine the number N of molecules in the system from a
measurement of the mass M of the system.

The preceding comment is especially useful for comparing the num-
bers of molecules in two different samples of the same substance. Indeed,
suppose that we measure the masses M and M ′ of these two samples.
Then we know that the numbers N and N ′ of molecules in these two
samples must be such that M = Nm and M ′ = N ′m (with the same
mass m of a single molecule). Hence M/M ′ = N/N ′. The relative num-
bers of molecules in the two amounts of the substance can thus be found
simply from the relative masses of these two amounts. Since it is easy
to measure the masses of systems, but almost impossible to count the
enormous numbers of molecules in them, measurements of mass are used
in chemistry and daily life whenever information about the number of
particles is of central interest. (For example, we are willing to pay twice
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as much for 2 grams of gold as for 1 gram because the additive property
of mass assures us that we are buying twice as many gold atoms.)

Every ordinary system of particles consists ultimately of “elemen-
tary” atomic particles, i.e., of electrons and of the nuclear particles (pro-
tons and neutrons) which are the constituents of the atomic nuclei. These
atomic particles are ordinarily neither created nor destroyed, and each of
them has a definite mass unaffected by its interaction with other parti-
cles. Hence the sum of the masses of all the elementary particles in an
isolated system, and thus also the measured mass of the system, as given
by Rule (D-1), remains unchanged regardless of what processes occur in
the system. Thus we arrive at the “principle of conservation of mass”
which can be summarized:

Conservation of mass: The mass of an isolated system
remains constant irrespective of all processes.

(D-2)

For example, the measured mass of an isolated system remains unchanged
irrespective of whether the particles form a solid, or melt to form a liq-
uid, or vaporize to form a gas, or undergo chemical reactions in which
molecules dissociate or recombine to form new kinds of molecules.

LIMITATIONS ON VALIDITY

The additive property of the measured mass, Rule (D-1), and the
conservation of mass, Rule (D-2), are consequences of the Newtonian the-
ory of motion. Although these principles may seem self-evident, they are
not valid under conditions where the basic assumptions of the Newtonian
theory are not justified. For example, if the particles in a system interact
by very strong forces, some of these basic assumptions must be replaced
by the refinements of the theory of relativity so that Rule (D-1) and Rule
(D-2) are no longer true. The forces between atoms or molecules are suffi-
ciently weak that the Newtonian theory is applicable with great precision
in chemistry and everyday life. But the forces between particles within
the atomic nucleus are so strong that the principles in Rule (D-1) and
Rule (D-2) are only approximately valid in processes involving changing
interactions between such particles. [For example, the nucleus of an atom
of “heavy hydrogen” (or “deuterium”) consists of a proton of mass mp

and a neutron of mass mn. But the measured mass M of this nucleus
differs from the sum (mp +mn) of the masses of its constituent particles
by more than 0.1 percent, an easily measured amount.]

18
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Knowing About Additivity and Conservation of Mass

D-1
One mole of solid CO2 (dry ice), which contains 6.0 × 1023
molecules, forms a system of easily-measured massM = 0.044 kg.

Using this information and the properties of mass, we can find the mass of
a carbon dioxide molecule, and the masses of oxygen and carbon atoms,
in terms of the unit kilogram. (a) What is the mass mCO2 of a carbon
dioxide molecule? (b) The mass mC of a carbon atom is known from
chemical measurements to be (3/4) of the mass mO of an oxygen atom.
Express the mass mCO2 of a carbon dioxide molecule in terms of the mass
mO of an oxygen atom. (c) Use your results to find the masses mO and
mC of the atoms oxygen and carbon. (Answer: 103)
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SECT.

E MOMENTUM

It is often useful to express the equation of motion of a system of
particles directly in terms of their velocities. Let us first show how this
can be done in the case of a system consisting of a single particle, and
then consider the more complex case of a system consisting of several
particles.

SYSTEM CONSISTING OF A SINGLE PARTICLE

The equation of motion of a single particle of mass m is m~a = ~F .
By expressing the acceleration ~a in terms of the velocity ~v,we can write

m~a = m
d~v

dt
=

d(m~v)

dt
=

d~p

dt
, where ~p = m~v (E-1)

Here we have used the fact that d(m~v) = md~v (since m is merely a
constant) and have introduced the convenient abbreviation ~p = m~v. This
vector ~p is called the “momentum” of the particle. Then we can write
the equation of motion of a single particle either as

m~a = ~F

or
d~p

dt
= ~F (E-2)

According to its definition, the momentum ~p of a single particle is
simply the vector obtained by multiplying the mass m of the particle by
its velocity ~v. Since d~p/dt = ~F , the rate of change of the momentum of
a particle is equal to the total force on this particle. Thus the total force
on a particle is large if the rate of change of its momentum ~p = m~v is
large, i.e., if the particle has a large mass m and if its velocity ~v changes
rapidly.

For example, if a watch is dropped on the floor, the injury sustained
by the watch depends on the total force ~F acting on the watch during its
impact with the floor. This force ~F , which is equal to the rate of change
of the momentum ~p = m~v of the watch, will be large if the watch has
a large mass m and if its velocity ~v changes rapidly (i.e., if the ground
surface is hard so that the watch is brought to rest during a very short
time after hitting the surface).
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Fig. E-1: Momentum of a system of
two particles. (a) Velocities of the
particles. (b) Momenta of the par-

ticles and momentum ~P of the sys-
tem. (The particle masses are such
that m2 = 4m1.)

GENERAL SYSTEM

Consider now a system consisting of several particles. According to
Eq. (B-6), its equation of motion is

m1~a1 +m2~a2 + . . . = ~Fext (E-3)

By using the result Eq. (E-1) for each particle, this relation can be
written as

d~p1

dt
+

d~p2

dt
+ . . . =

d(~p1 + ~p2 + . . .)

dt
= ~Fext (E-4)

where we have used the fact that the rate of a sum is equal to the sum
of the rates. Then we can write Eq. (E-4) in the simple form

d~P

dt
= ~Fext (E-5)

if we introduce the convenient abbreviation ~P = ~p1 + ~p2 + . . .. This
vector ~P , called the “momentum of the system,” is simply the sum of
the momenta of all the particles in the system. (See Fig. E-1.)

Def. Momentum of a system: ~P = m1~v1+m2~v2+. . . (E-6)

By using Eq. (C-4), this definition of the momentum of a system can
also be written as

~P =M~V (E-7)

In other words, the momentum of a system is the vector obtained by
multiplying the mass M of the system by the velocity ~V of its center of
mass. (Thus the momentum of a system is the same as that of a single
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particle having a mass M equal to the mass of the system and a velocity
~V equal to that of the center of mass of the system.)

The relation d~P/dt = ~Fext of Eq. (E-5) summarizes the equation of
motion of a system in a simple and useful form. It asserts that the rate of
change of momentum of any system is equal to the total external force on
it. Thus this external force is large if the mass M of the system is large
and if the velocity ~V of its center of mass changes rapidly.

FORCES PRODUCED IN COLLISIONS

Consider a person who collides with a surface (e.g., a person hitting
the ground after falling from some great height). Then the velocity
~V of the person’s center of mass changes very rapidly as the person
is brought to rest during a very short time after his impact with the
surface. Hence the rate of change of the person’s momentum is quite
large, especially if he has a large mass M . Consequently the total
external force ~Fext = d~P/dt exerted on the person during the collision is
also large, indeed often large enough to cause serious injuries. *

* The total external force on the person during the collision
consists mostly of the contact force exerted on the person by
the surface, since this force is usually much larger than any
other forces (such as gravitational forces).

To estimate the magnitude of the external force acting on the
person during the collision, suppose that the time interval dt during
which the collision occurs is small enough so that the rate of change of
momentum d ~P/dt, and thus the force ~Fext, is nearly constant during this
time interval. Then the equation of motion of the person implies that
~Fext = d~P/dt where ~P =M~V is the momentum of the person of mass M

when the velocity of his center of mass is ~V . If the initial value of this
velocity just before the collision is ~V0 and the person is brought to rest
as a result of the collision (so that ~V = 0 just after the collision), the
change in the person’s momentum during the collision is then

d~P = 0−M~V0 = −M~V0

Hence the equation of motion of the person leads to the result

~Fext =
d~P

dt
= −M~V0

dt
(E-7)
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What can be done to keep the total external force on the person
during the collision as small as possible? From Eq. (E-7) it is apparent
that it helps if the massM of the person is small and if his center-of-mass
speed ~V0 just before the impact is small. Furthermore, one can try to
make the duration dt of the impact as long as possible. For example,
a falling person landing on the ground with his feet can lengthen the
time interval dt during which his center of mass is brought to rest by
allowing his knees to bend and thus breaking his fall. Similarly, persons
have survived falls from very great heights in cases where they fell on soft
snow (so that the time interval during which they were brought to rest
was several times longer than in a collision with the hard ground).

Understanding the Definition of Momentum (Cap. 1a)

E-1
Statement and example: Consider once again our example of a
car (of mass mc = 1000 kg) and a truck (of mass mt = 2000 kg)

which collide at an icy intersection. Just before the collision, the car has
a velocity ~vc = 20m/s north and the truck has a velocity ~vt = 10m/s

east. Define by an equation and then find a value for the momentum ~P
of each of these systems: (a) the system consisting of the car alone, (b)
the system consisting of the truck alone, (c) the system consisting of both
the car and the truck. (Answer: 109) ([s-13], [p-3])

E-2
Comparing momentum and velocity: Which of the following state-
ments correctly compare momentum and velocity? If a statement

is incorrect, briefly explain why. (a) If a single particle’s speed or direc-
tion of motion changes, both its velocity and its momentum also change.
(b) Two particles having the same velocity must have the same momen-
tum. (c) The direction of the momentum of any system is the same as
the direction of the velocity of its center of mass. (d) The momentum of a
system of several particles can be zero even though the velocities of these
particles are not zero. (Answer: 106) (Suggestion: [s-11])

E-3
Relating momentum to velocity for composite systems: The car
and truck described in problem E-1 lock together during the col-

lision. Immediately afterward, the momentum of the composite wreckage
is 2.8× 104 kg m/s northeast. What is the velocity of the wreckage (i.e.,
of its center of mass)? (Answer: 123)

E-4
Relating momentum to the velocity of part of a system: When a
patient lies on a light cot which is free to move horizontally, his

body moves (with the cot) minutely back and forth. This body motion,
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measured by the ballistocardiogram, is due to the motion of the blood
pumped by the heart. As a simplified example illustrating the relation
of the ballistocardiogram to blood flow, imagine the patient’s body as a
system with two parts: (1) the volume of blood, of mass m1 = 0.08 kg,
ejected from the heart in every stroke, and (2) the rest of the patient’s

body, of mass m2 = 80 kg. This system has momentum ~P = 0. When
the volume of blood is ejected into the aorta, its center of mass moves
with some velocity ~v1. Correspondingly, the center of mass of the rest
of the patient’s body moves with a typical measured velocity ~v2 = (5 ×
10−4m/s)x̂, where the direction x̂ points from the patient’s head toward
his feet. (a) What is the velocity ~v1 of the center of mass of the ejected
blood? (b) Review: The center of mass of the ejected blood and that
of the rest of the body continue to move with these velocities for about
0.1 second. How far, and in what direction, does each center of mass move
during this time? (Answer: 116) (Suggestion: [s-9])

Understanding the Relation d ~P/dt = ~Fext (Cap. 1b)

E-5
Example: At the top of its trajectory, a baseball of mass 0.16 kg
is moving horizontally with a speed of 15m/s. (a) If the force on

the baseball due to the air is negligible, what is the total external force
~Fext on the baseball? (b) What is the change d ~P in its momentum during

the small time interval dt = 2.0 second? (As long as ~Fext is constant, any
time interval is small enough.) (Answer: 112)

E-6
Comparing momentum and momentum change: (a) For the exam-
ple in problem E-5, draw a rough diagram showing the baseball’s

momentum ~P at the top of its trajectory, the subsequent change d ~P in its
momentum, and its new momentum ~P ′ = ~P + d~P . Are the values of any
of these quantities the same? (b) The total external force on a bowling
ball rolling down an alley is negligible. As the ball rolls, is its momentum
zero? Is the change in its momentum zero? (Answer: 118)

E-7
Relating quantities: Because of air friction, an 80 kg man who
falls from a great height will have a speed of only 50m/s (the

“terminal velocity”) when he hits the ground. (a) What is the change in
the momentum of such a man as he comes to rest during the impact with
the ground? (b) Suppose the total external force on the man during the
impact has an approximately constant value of 1.2 × 105N upward, the
maximum force he can sustain without serious injury if he lands on his
back. What is the corresponding minimum duration of impact needed to
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avoid serious injury? (A parachutist whose parachute failed to open once
experienced an impact of this duration on soft snow. He suffered only two
minor fractures and a few bruises.) (Answer: 114) (Suggestion: [p-4])

E-8
Dependence of total external force on momentum change:
Consider two persons of different mass who fall from the same

height and thus hit the ground with the same velocity. Suppose that
both take the same small enough time interval to come to rest. (a) Dur-
ing the impact, is the momentum change of the more massive person larger
than, equal to, or smaller than the momentum change of the less massive
one? (b) Is the total external force during impact (and thus the chance of
injury) the same for the two persons? If not, which one experiences the

larger ~Fext? (Answer: 120) (Suggestion: [s-6])
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SECT.

F CONSERVATION OF MOMENTUM

Suppose that the total external force on a system is zero. Then its
equation of motion d ~P/dt = ~Fext = 0. Since the rate of change of the

momentum ~P of the system is zero, ~P must then remain constant. Thus
we arrive at this conclusion, known as the “principle of conservation of
momentum”:

Conservation of momentum: If the total external force
on a system is zero, the momentum of the system re-
mains constant. *

(F-1)

* Similarly, if the component vector of ~Fext parallel to some
direction is zero, the component vector of ~P parallel to this
direction must remain constant.

For example, consider a system consisting of two interacting particles
having masses m1 and m2 (e.g., a car and a truck colliding at an icy
intersection). Suppose that the total external force on this system is
zero. Then the conservation of momentum states that

~P = m1~v1 +m2~v2 = constant (F-2)

Thus the interacting particles move always in such a way that the
sum of their momenta remains unchanged, i.e., so that any change
in the momentum m1~v1 of one of the particles is always accompanied
by an opposite change of the momentum m2~v2 of the other particle.
Correspondingly, the velocity change ∆~v1 of one of the particles has
during any time a direction opposite to the velocity change ∆~v2 of the
other particle (although the magnitudes of these velocity changes are
different unless the masses m1 and m2 of the particles are the same). *

* This relation between velocity changes is consistent with
the relation m1~a1 = −m2~a2 connecting the accelerations of
two particles isolated from the rest of the universe.

If we consider the preceding two particles at any two times t and t′,
the conservation of momentum implies that

~P = ~P ′ (F-3)
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Fig. F-1: Radioactive disintegration of a
tritium nucleus.

or equivalently that

m1~v1 +m2~v2 = m1~v ′1 +m2~v ′2 (F-4)

where we have denoted quantities at the time t by unprimed symbols and
quantities at the time t′ by primed symbols.

The conservation of momentum is especially useful for comparing the
motions of particles before and after some process. For example, such a
process might be a “collision,” i.e., a process in which particles inter-
act (by contact or long-range forces) for some time, without interacting
either before or afterwards. Alternatively, such a process might be the
dissociation or recombination of particles, as illustrated in this example:

Example F-1: Recoil of a radioactive nucleus

Tritium is a radioactive hydrogen atom which can be substituted for
some ordinary hydrogen atoms in molecules of biological interest (such as
DNA). In this way one can label particular atoms in such molecules and
can thus study biological processes at the molecular level. The tritium
atom is radioactive because its nucleus disintegrates into a helium nucleus
by emitting a high-speed electron. Suppose that the external forces on a
tritium nucleus are negligible. If this nucleus is initially at rest and then
emits an electron of mass me = 9× 10−31 kg with a speed of 8× 107m/s,
what is the “recoil velocity” acquired by the remaining helium nucleus of
mass mn = 5× 10−27 kg? (This recoil velocity is partially responsible for
the damage done to the biological molecule in which the tritium atom is
incorporated.)

Description: Fig. F-1 illustrates the situation before and after the
disintegration of the tritium nucleus. Using primes to indicate quantities
after the disintegration, let us call ~v ′e the velocity of the electron and ~v ′n
the velocity of the helium nucleus. Then we know the masses me and mn,
and the speed |~v ′e| = 8×107m/s. We should like to find the velocity ~v ′n.
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Planning: Since the total external force on the system is negligible,
the conservation of momentum implies that ~P = ~P ′ where ~P is the mo-
mentum of the system before the disintegration and ~P ′ is its momentum
after the disintegration. Here ~P = 0 since the original tritium nucleus is
at rest. Then the relation ~P = ~P ′ is equivalent to

0 = me~v ′e +mn~v ′n

Implementation: We can solve the preceding equation for ~v ′n. Thus
mn~v ′n = −me~v ′e or

~v ′n = −
me

mn

~v ′e

Hence the velocity ~v ′n of the helium nucleus has a direction opposite to
that of the velocity ~v ′e of the emitted electron. (This is why the nucleus
is said to “recoil.”) Furthermore the magnitude of this velocity is

|~v ′n| =
me

mn

|~v ′e| =
9× 10−31 kg

5× 10−27 kg
(8× 107m/s) = 1.4× 104m/s

Checking: Note that the speed of the helium nucleus is much less
than that of the electron. This makes sense since this nucleus has a
much larger mass, and thus always a much smaller acceleration, than the
electron.

Understanding Conservation of Momentum (Cap. 1c)

F-1
Applicability: To which of the following systems does the principle
of conservation of momentum apply? (a) A heart patient and the

cot he lies on, when this system is supported by air jets so that it can
move horizontally with negligible friction. (b) Two vehicles involved in a
collision on a level icy intersection where frictional forces due to the road
are negligible. (c) One of the vehicles in this collision. (d) A rocket and
its exhaust gases when both are far from other objects. (e) The preceding
system near the earth. (Answer: 111) (Suggestion: [s-8])

Now: Go to tutorial section F.
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Fig. F-2. Fig. F-3.

Applying Conservation of Momentum (Cap. 1a, 4)

F-2
A 1500 kg pickup truck and a 3000 kg moving van collide on a
level icy curve (Fig. F-2). Just before the collision, both trucks

are traveling with equal speeds of 20m/s in perpendicular directions. Fric-
tional forces on the tires of the vehicles are negligible during the collision.
(a) The two vehicles lock together in the collision. Which of the directions
in Fig. F-2 best indicates the direction of the momentum (or velocity) of
the combined wreckage just after the collision? (b) What is the magni-
tude of this momentum? (c) What is the speed of the wreckage just after
the collision? (Answer: 113) (Suggestion: [s-1])

F-3
Figure F-3 illustrates a simple method for measuring the large
“muzzle velocity” of a bullet emerging from a rifle. The bullet, of

mass 1 gram, immediately strikes a stationary wood block of mass 1 kg,
and the two then slide together with a small, easily-measured speed along
a nearly frictionless horizontal surface. During and after this collision, the
total external force on the system of bullet and block is thus negligible.
(a) Suppose the measured speed of the block and embedded bullet is
0.5m/s. What was the momentum of the system of bullet and block just
before their collision? (b) What was the speed of the bullet at this time?
(Answer: 119)

(Practice: [p-5])
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SECT.

G SUMMARY

DEFINITIONS

state of a system; Def. (A-2)

total external force; Eq. (B-5)

mass of a system; Def. (C-3)

center of mass; Def. (C-6)

momentum; Def. (E-6)

IMPORTANT RESULTS

Predictive power of mechanics: Rule (A-3)

Knowledge of the state of a system at any time allows prediction of
its state at any other time.

Equation of motion of a system: Eq. (C-1), Eq. (E-5)

M ~A = ~Fext or d~P/dt = ~Fext, where ~P = m1~v1 +m2~v2 + . . . = M~V

is momentum of system, ~A and ~V are acceleration and velocity of its
center of mass.

Properties of the mass of a system: Rule (D-1), Rule (D-2)

M = m1 +m2 + . . .

M for isolated system remains constant

Conservation of momentum: Rule (F-1)

If ~Fext = 0, ~P = constant.

NEW CAPABILITIES

You should have acquired the ability to:

(1) Understand these relations for a system of particles:
(a) the definition of momentum (Sec. E; [p-3]),

(b) the relation d ~P/dt = ~Fext (Sec. E; [p-4]),

(c) the conservation of momentum (Sec. F).

(2) Use the forces acting on the particles in a system to find the total
internal and external force on the system. (Sec. B; [p-1])

(3) (a) Use the external force on a system of particles to find the accel-
eration of its center of mass. (b) Locate the position of the center of
mass for symmetric systems. (Sec. C; [p-2])
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(4) By applying conservation of momentum, use the masses and velocities
of the particles in a system at one time to find the momentum of the
system at any time. (Sec. F; [p-5])

Describing the Motion of a System (Cap. 1, 3, 4)

G-1
The common squid Loligo vulgaris maneuvers by jet propulsion.
The adult has a mass of 150 gram with its mantle full of water,

and it forcefully expels about 50 gram of water from its mantle in one jet
pulse. In a filmed sequence of an escape response, such an adult squid
accelerated from rest to a speed of 2m/s with one pulse. To estimate the
speed of the water expelled in this pulse, assume that the total external
force on the system of squid and expelled water is negligible. (a) What is
the momentum of this system immediately after the pulse? (b) What is
the speed of the expelled water (i.e., of its center of mass) at this time?
(Answer: 117)

G-2
Because the brain is easily damaged by large accelerations of
the head, blows to the head are a serious hazard in heavyweight

boxing. To illustrate this point, consider the typical motion of a boxer’s
head, of mass 4.0 kg, struck squarely by an opponent. Just before the
blow, the center of mass of the boxer’s head has a velocity of 1.0m/s
along a horizontal direction x̂ toward the opponent, and just afterwards
it has a recoil velocity of 8.0m/s in the opposite direction. The duration of
the blow is about 0.015 second. (a) What is the change in the momentum
of the boxer’s head during the blow? (b) Assuming that the total external
force on the boxer’s head is approximately constant during the blow, what
is the value of this force? (c) What is the acceleration of the center of
mass of the boxer’s head during the blow? (Answer: 115)

G-3
An unknown radioactive atom, isolated and initially at rest, de-
cays by emitting a particle. The resulting “daughter” atom is

identified as a lead isotope (210Pb) of mass 210m0, where m0 is the mass
of a proton. After the decay, the lead atom has a speed of 3.4× 105m/s,
and the emitted particle has a speed of 1.8 × 107m/s. (a) At this time,
what is the momentum of the system consisting of lead atom and emitted
particle? (b) The original radioactive atom can be identified if the mass
of the emitted particle, and thus its identity, is known. What is the mass
of this particle, expressed in terms of the mass m0 of a proton? (Answer:
128)
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SECT.

H PROBLEMS

H-1
Severity of elastic and inelastic impacts : Depending on the
design of an automobile dashboard, a head hitting the dashboard

in a collision might either bounce or come to rest during the impact.
Let us compare the severity of these two types of impact if the person’s
head has a mass of 4.0 kg and hits the dashboard with a typical speed of
20m/s. (a) Suppose the head bounces with a velocity just after impact
that is equal in magnitude but opposite in direction to its velocity just
before impact. (Such an impact is called “elastic.”) If the impact lasts
0.010 second, what is the magnitude Fext of the total external force on
the head, assuming that this force is nearly constant during the impact?
(b) Suppose instead that the head comes to rest in an impact of the same
duration. (Such an impact is called “inelastic.”) What is the magnitude
Fext of the total external force exerted on the head in this case? (c) Which
of these types of impact is likely to cause the most severe head injury?
(Answer: 125) ([s-7], [p-6])

H-2
Center of mass displacement and impact force: As an object
comes to rest during an impact, its center of mass moves through

some displacement of magnitude `. This distance, which is often easier to
measure than the duration ∆t of the impact, can be related directly to
the magnitude Fext of the total external force on the object if we assume
that ~Fext is constant during the impact. Thus the object’s center of mass
moves with constant acceleration (i.e., uniformly decreasing speed) during
the impact. (a) First, write an expression for Fext in terms of the object’s
mass M , the speed V0 of its center of mass just before impact, and the
duration ∆t of the impact. (b) Now express the distance ` moved by the
object’s center of mass during the impact in terms of V0 and ∆t. (c) By
combining your results, express Fext in terms of M , V0 , and ` alone. (d)
To illustrate, consider a 100 kg man who jumps to the ground from the
small height of 2meter, thus hitting the ground feet first with a speed of
6m/s. His ankles are likely to break if Fext exceeds 10

5N. Find the value
of Fext if he lands with his legs stiff, so that ` = 1 cm, and if he bends his
knees on landing, so that ` = 10 cm. Can he break his ankles in such a
small jump? (Answer: 122) ([s-5], [p-7])

H-3
How far you can safely drop if you land stiff-legged: As a person
of mass M drops feet first from a small height h to the ground,

the person’s center of mass falls from rest a distance h with acceleration
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~g, and thus acquires some speed V0 just before the person hits the ground.
(a) Express V0 in terms of h and g. (b) Using the results of problem H-2,
show that the magnitude of the total external force on the person during
impact is given by Fext = Mgh/`, where ` is the distance moved by the
person’s center of mass during impact. (c) Assuming that 105N is the
maximum safe value for Fext what is the maximum distance h an 80 kg
man and a 50 kg woman can safely drop if they land stiff-legged, so that
` = 1 cm for both? (Answer: 127) (Suggestion: [s-4])

H-4
Estimating the impact force in a rear-end collision: A 1000 kg
car moving with a velocity of 10m/s north hits the back of a

3000 kg truck at rest at a stoplight. Just after the collision, which lasts
0.02 second, the truck has a velocity of 4m/s north. (a) Assuming that
frictional forces due to the road are negligible during the collision, what
is the velocity of the car just after the collision? (b) What is the total
external force exerted on the car during the collision, assuming that this
force is nearly constant? What is the total external force on the truck
during the collision? (Answer: 124)

H-5
Deflection of atoms in ion production: To produce negatively-
charged oxygen ions (O−) used in an experiment, oxygen atoms

of mass 2.7 × 10−26 kg moving in vacuum with a speed of 1.5 × 103m/s
are struck by electrons of mass 1.0× 10−30 kg moving in a perpendicular
direction with a speed of 3.0 × 107m/s. When an electron strikes and
combines with an oxygen atom, the resulting ion is deflected from the path
of the oxygen atoms. For such a collision, find (a) the angle between the
oxygen ion’s velocity and the original direction of motion of the oxygen
atom, and (b) the speed of the ion. External forces on this system of
colliding particles are negligible. (Answer: 121)

H-6
Nabbing speeders with momentum conservation: Suppose your in-
vestigations of an accident reveal that a 3000 kg truck was travel-

ing north with a speed of 10m/s when it was hit by a 1000 kg car traveling
west, and that the combined wreckage moved precisely northwest from the
point of impact. To decide whether to add speeding to the list of the car
driver’s offenses, find the speed of the car just before the collision, as-
suming that frictional forces on the vehicles were negligible during the
collision. (Answer: 126)
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TUTORIAL FOR F

RELATING MASSES AND VELOCITIES USING MOMENTUM
CONSERVATION

f-1 PURPOSE: Whenever the total external force on a system of par-
ticles is negligible or zero, we can use the principle of conservation of
momentum to relate the masses and velocities of particles in the system
at two different times. To do so, we use the known masses and velocities
of particles in the system at one time t to find its momentum ~P at this
time. Using this value, and the fact that the system’s momentum ~P ′ at
any other time t′ must be equal to ~P , we can find the desired information
about the masses or velocities of the particles in the system at the time
t′.

The purpose of the next frame is to illustrate this method in more detail
by applying it to a problem. In doing so, we shall follow the basic steps
of the problem-solving strategy outlined in text section D of Unit 409.

f-2 A METHOD FOR APPLYING CONSERVATION OF MOMEN-
TUM: Let us systematically solve this problem:

A 100 kg astronaut, isolated in deep space, uses a container of gas to ma-
neuver near his spacecraft. Shortly after the astronaut releases a 0.10 kg
burst of gas from the container, he has a velocity of 1.0m/s along a di-
rection x̂ toward his spacecraft, while the center of mass of the gas burst
has a velocity of 1700m/s along a perpendicular direction ŷ. What was
the astronaut’s velocity before he released the burst?

DESCRIPTION

Sketch:

ŷ

x̂

Known information: After the burst (time t): astronaut, of massma =
100 kg, has velocity ~va = 1.0m/s x̂; gas burst, of massmg = 0.1 kg, has
velocity ~vg = 1700m/s ŷ. Before the burst (time t′): astronaut and
gas, of mass M = mg +ma = 100 kg, move together. Astronaut and
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gas interact, but are otherwise isolated. Desired information: velocity
~v ′a of astronaut before releasing the burst.

PLANNING

(1) Decide whether conservation of momentum applies to a system.

To do so, we must find a system on which the total external force
is zero or negligible. This is not true of a system consisting of
either the astronaut or gas burst individually, since these objects
interact with each other. However, the system consisting of both
the astronaut and gas burst is isolated, so that conservation of
momentum applies to this system.

(2) Express the principle of conservation of momentum in terms of sym-
bols for known and desired information.

As a first step, we write ~P = ~P ′, where ~P is the momentum
of the system of astronaut and gas after the release of the burst
(which we can find from known information), and ~P ′ is the un-
known momentum of this system before the release of the burst.
Using the symbols we have introduced, we can write the relations
~P = ma~va +mg~vg and ~P ′ =M~v ′a. Since we know all the quanti-
ties in these relations except the desired velocity ~v ′a, we can find
this velocity.

IMPLEMENTATION

(1) Solve algebraically for the desired quantity.

Since ~P ′ = M~v ′a = ~P , ~v ′a = ~P/M . We can find the momentum
~P from the relation ~P = ma~va +mg~vg.

(2) Substitute known values, and find the desired quantity.

We first use a vector diagram to construct the vector ~P :

ŷ

x̂

m v
`

= 170 kg m/s ŷg g

m v
`

= 100kg m/s x̂a a
P
`

q
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Using this diagram, we can find the magnitude and direction of
~P . Thus P =

√

(1.0× 102 kg m/s)2 + (1.7× 102 kgm/s)2, or P =
√

3.9× 104 ( kg m/s)2 = 2.0× 102 kgm/s. We can find the angle θ
using the relation sin θ = (100 kgm/s)/P = 0.50, so that θ = 30◦.

Thus ~P = 2.0× 102 kgm/s at an angle of 30◦ from ŷ. Thus, since

M = 100 kg, ~v ′a = ~P/M = 2.0m/s at an angle of 30◦ from ŷ.

CHECKING

Our work is correct, and the result has the correct unit and a reasonable
magnitude and direction.

The method we have illustrated is useful in applying conservation of mo-
mentum to any problem. In particular, it should help you solve system-
atically the remaining problems in text section F.

Now: Go to text problem F-2.
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PRACTICE PROBLEMS

p-1 FINDING TOTAL INTERNAL AND EXTERNAL FORCES

(CAP. 2): While working on the outside of a 1000 kg spacecraft orbiting
near the earth’s surface, a 100 kg astronaut holds on to the spacecraft’s
hull, thus exerting a force of magnitude 1N on the spacecraft. The grav-
itational forces on the astronaut and spacecraft, which cause them to
orbit together, have about the same magnitude as on the earth’s surface.
What are the magnitudes of the total external force and the total inter-
nal force exerted on the system of astronaut and spacecraft? (Answer: 5)
(Suggestion: review text problems B-1 and B-2.)

p-2 DESCRIBING POSITION AND MOTION OF THE CENTER

OF MASS (CAP. 3): A weightlifter’s barbell consists of a 10 kg rod which
holds four wheel-shaped weights, one of mass 50 kg and one of mass 20 kg
at each end. (a) Where is the barbell’s center of mass located? (b) During
a lift, the weightlifter exerts a force of 1515N upward on the rod. At this
time, what is the total external force acting on the barbell? What is the
acceleration of the barbell’s center of mass? (Answer: 2) (Suggestion:
review text problems C-2 through C-5.)

p-3 UNDERSTANDING THE DEFINITION OF MOMENTUM

(CAP. 1A): During a double-play, a baseball player of mass 80 kg jumps
vertically upward to catch a ball thrown over his head. Just before the
catch, the 0.15 kg ball has a horizontal velocity of 20m/s to the right,
while the player has a velocity of 0.05m/s upward. At this time, what
is the magnitude of the momentum of the system of player and ball?
(Answer: 9) Now: Return to text problem E-1 and be sure your work is
correct.

p-4 UNDERSTANDING THE RELATION D~P/DT = ~FEXT

(CAP. 1B): Just before it is hit by a bat, a baseball of mass 0.15 kg has
a horizontal velocity of 30m/s toward the bat. Just after it is hit, the
baseball has a horizontal velocity of 34m/s in the opposite direction, or
away from the bat. (a) What is the change in the baseball’s momentum
during its impact with the bat? (b) This impact lasts only 0.001 second.
Assuming that this interval is small enough, what is the total external
force on the baseball during impact? (c) To show that this force is nearly
all due to the bat, find the ratio of its magnitude to the magnitude of the
gravitational force on the baseball. (Answer: 1) (Suggestion: review text
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problem E-7.)

p-5 APPLYING CONSERVATION OF MOMENTUM (CAPS. 1A,

4): An alpha particle (helium nucleus) of mass 6.7 × 10−27 kg, moving
with a speed of 2.0×107m/s along a direction x̂, collides head-on with an
unknown nucleus at rest in the gas filling a “cloud chamber.” Immediately
after the collision, the alpha particle moves back along its original path
with a speed of 1.0× 107m/s,while the nucleus moves along the original
direction of motion x̂ of the alpha particle with a speed of 9.0× 106m/s.
These data, which are obtained from observations of condensed droplets
indicating the tracks of the particles in the cloud chamber, can be used to
find the mass of the unknown nucleus. (a) What is the momentum of the
system of alpha particle and nucleus after their collision? (This system
is isolated.) (b) What is the mass of the unknown nucleus? (Answer: 6)
(Suggestion: review the procedure followed in tutorial frame [f-2].)

More Difficult Practice Problems (Text Section H)

p-6 SEVERITY OF AUTO COLLISIONS: Consider the following pos-

sible collisions of a car of mass m traveling north with a speed v: (1) the
car strikes a cliff head-on and comes to rest, (2) the car collides with an
identical car at rest, and both cars move north together with a speed
v/2, (3) the car collides head-on with an identical car moving south with
speed v, so that both cars come to rest in the collision. (a) Assuming
that these collisions all have the same small enough duration dt, write an
expression for the magnitude Fext of the total external force on the car
in each collision. (b) Rank these collisions in order of increasing severity
(i.e., in order of increasing Fext). (Answer: 8) (Suggestion: review text
problem H-1.)

p-7 IMPACT OF A GOLF CLUB WITH A GOLF BALL: In the early

days of high-speed photography, pictures were taken of a golf club hitting
a stationary golf ball of mass 0.06 kg. After an impact of duration 2 ×
10−4 second, the ball’s center of mass was found to have a speed of 60m/s.

(a) Assuming that the total external force ~Fext on the ball was nearly
constant during the impact, estimate its magnitude. (b) Under the same
assumption, estimate the distance traveled by the ball’s center of mass
during the impact. (Answer: 4) (Suggestion: review text problem H-2.)
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SUGGESTIONS

s-1 (Text problem F-2): Use the procedure outlined in tutorial frame
[f-2] as a guide.

s-2 (Text problem C-4): Only one external force, the gravitational force
due to the earth, acts on the particles in the high-jumper’s body. Thus
the equation of motion of her center of mass is M ~A = ~Fext =M~g, where
M is her mass.

s-3 (Text problem B-2): Note that there are only two external forces
on each of the particles in this system (the truck and the car), and that
these forces are equal in magnitude and opposite in direction.

s-4 (Text problem H-3): Assume that the person takes a time interval
∆t to hit the ground. Since the person’s center of mass moves with con-
stant acceleration ~g, its motion is described by these relations discussed
in Unit 406: ∆~v = ~g∆t and ∆r = ~vA∆t+ 1/2~g(∆t)2. Use these relations
to express the final speed v0 in terms of g and ∆t, and the distance h in
terms of g and ∆t. Then combine these results to eliminate the unknown
time interval ∆t.

s-5 (Test problem H-2): During the time interval ∆t, the object’s center
of mass moves like a particle with a uniformly changing velocity. There-
fore, using our result from text section D of Unit 404, the center of mass
has a displacement equal to its average (or middle) velocity multiplied by
the time interval. Since the center of mass has a final velocity of zero, its
middle velocity is just one-half its initial velocity.

s-6 (Text problem E-8): The person with larger mass has a larger mo-
mentum upon striking the ground, because the velocities of the two per-
sons are the same. Consequently, the change in the momentum of the
more massive person is also larger, since the final momentum of both
persons is zero.

s-7 (Text problem H-1): Apply the relation d ~P/dt = ~Fext. In part
(a), note that the momentum of the head after the impact is equal in
magnitude but opposite in direction to the momentum of the head before
the impact, so that the change d ~P in the momentum, a vector difference,
is not zero. (Verify this for yourself with a diagram.)
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s-8 (Text problem F-1): The momentum of a system is only conserved if
the total external force on the system is negligible or zero. For example,
this is the case for the system of patient and cot because this system
is supported vertically and is free to move horizontally with a negligible
friction. On the other hand, this is not true of one of the vehicles involved
in a collision, even though the vehicle is similarly supported by an icy
surface, because this system experiences a horizontal external force due
to the other vehicle.

s-9 (Text problem E-4): Since any system (which might be part of an-
other system) has a momentum equal to its mass times the velocity of
its center of mass, the momenta of the two parts of the patient’s body
are m1~v1 and m2~v2. Thus the momentum ~P of the patient’s body is
~P = m1~v1 + m2~v2 = 0. Using this vector relation, you can obtain an
equation for ~v1 in terms of the known quantities m1, m2, and ~v2.

s-10 (Text problem B-1): The internal forces on a system are just the
mutual forces between particles in the system. Thus the force on the
parachute due to the man and the force on the man due to the parachute
are the internal forces. The forces on these particles due to things outside
the system, such as the air, are external forces. To find the total external
force Fext on the system, first find the value of all external forces on both
the man and the parachute, and then find their vector sum. (A unit
vector or arrow diagram may be helpful.)

s-11 (Text problem E-2): Each of the following suggestions should help
you evaluate the corresponding statement in text problem E-2: (a) The

momentum of a single particle with velocity ~v is just ~P = m~v. Remember
that ~v changes if either the particle’s speed or direction of motion changes.
(b) The momentum of any system is related to the velocity ~V of its center

of mass by the equation ~P = M~V , where M is the mass of the system.
(c) Compare the momentum of a railroad engine with the momentum of
a ping-pong ball having the same velocity! (d) Find the momentum of
a system of two particles of equal mass which are traveling in opposite
directions with the same speed.

s-12 (Text problem C-1): Let us find the position vector ~R of the
center of mass of the oxygen molecule. Since there are only two particles
in this system, M ~R = m1~r1 + m2~r2, where ~r1 and ~r2 are the position
vectors of the two oxygen atoms, m1 = m2 is the mass of an oxygen
atom, and M = m1 +m2 is the mass of the system.

41

MISN-0-413 Suggestions Supplement su-3

0.6 Å

O O

0.6 Å

O2

If we call the oxygen atom on the left particle 1, the vector m1~r1 =
(16 amu)(0.6 Å to the left) = 9.6 amu Å to the left.

What is the value of m2~r2?

- m2~r2 =

What is the value of the vector sum m1~r1 +m2~r2?

- m1~r1 +m2~r2 =

What is the value of the position vector ~R of the center of mass?

- ~R =

(Answer: 7) Now: Return to text problem C-1.

s-13 (Text problem E-1): Part (c): The momentum ~P of the system

consisting of both the car and the truck is the vector sum ~P = mc~vc+mt~vt.
From part (a), mc~vc+(10

3 kg)(20m/s north) = 2×104 kg m/s north, and
from part (b), mt~vt = 2× 104 kg m/s east.

Use a rough vector diagram to construct the vector ~P . Be sure to
indicate on your diagram that mc~vc and mt~vt have different directions
but the same magnitude.

N

E

m v
`
t t

m v
`

c c
P
`

The vectors in this diagram form a right triangle which you can use to
find both the magnitude and direction of the momentum ~P .
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- ~P =

(Answer: 3) Now: Go to [p-3].
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ANSWERS TO PROBLEMS

1. a. 9.6 kg m/s horizontally away from the bat

b. 9.6× 103N horizontally away from the bat

c. Fext/mg = 6.4× 103

2. a. at the rod’s center

b. 15N upward; 0.10m/s2 upward

3.

N

E

m v
`
t t

m v
`

c c
P
`

~P = 2.8× 104 kg m/s northeast
4. a. Fext = 2× 104N
b. 6× 10−3meter = 6mm

5. 1.1× 104N for total external force, zero for total internal force
6. a. 1.3× 10−19 kg m/s x̂

b. 2.2× 10−26 kg (it is a nitrogen nucleus)

7. 9.6 amu Å to the right, zero, zero

8. a. Fext = mv/dt in (1) and (3), Fext = mv/2dt in (2)

b. (2), (1) and (3) are equally severe

9. 5 kgm/s

101. 10m/s2 downward = ~g

102. a. ~R = 0 for both

b. midway between the oxygen atoms in O2, at center of C atom in
CO2

c. no

103. a. mcd = 7.3× 10−26 kg
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b. mcd = 2.75m0

c. mO = 2.7× 10−26 kg, mC = 2.0× 10−26 kg

104. both forces are zero

105. a. Internal: forces exerted on man and parachute by each other. Ex-
ternal: remaining forces.

b. zero

c. 100N downward

106. (a), (c), and (d) are true; (b) is false because two particles with the
same velocity but different mass have different momenta

107. zero; no

108. at the geometric center of each; e.g., at the center of the sphere for
the bubble and contained air, at the center of page 100 or 101 for the
book

109. a. ~P = mc~vc = 2.0× 104 kg m/s north
b. ~P = mt~vt = 2.0× 104 kg m/s east
c. ~P = mc~vc +mt~vt = 2.8× 104 kg m/s northeast

110. ~A = 1.1m/s2 downward

111. (a), (b), (d)

112. a. 1.6N downward

b. 3.2 kg m/s downward

113. a. 1

b. 6.7× 104 kg m/s
c. 15m/s

114. a. 4.0× 103 kg m/s upward
b. 0.033 second

115. a. (−36 kgm/s)x̂ = 36 kg m/s away from opponent

b. (−2.4× 103N)x̂ = 2400N away from opponent

c. (−6.0× 102m/s2)x̂ = 600m/s2 away from opponent

116. a. ~v1 = −m2~v2/m1 = (−0.5m/s)x̂ or 0.5m/s toward the head
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b. Blood: 0.05meter toward the head. Body: 5× 10−5meter toward
the feet

117. a. zero

b. 4m/s

118. a. ~P is horizontal, d ~P vertically downward, and ~P ′ at an angle down-
ward; no

b. no; yes

119. a. 0.5 kg m/s to the right in the figure

b. 500m/s

120. a. larger than

b. no; the more massive person

121. a. 37◦

b. 1.8 or 1.9× 103m/s
122. a. Fext =MV0/∆t

b. ` = V0∆t/2

c. Fext = mV 2
0 /2`

d. 2× 105N (legs stiff), 2× 104N (legs bent); yes, if stiff-legged

123. 9.3m/s northeast

124. a. 2m/s south

b. 6× 105N south; 6× 105N north
125. a. 1.6× 104N

b. 8× 103N
c. elastic

126. 30m/s = 67mph

127. a. V0 =
√
2gh

b. Fext = m(2gh)/2` = mgh/`

c. 1.3meter for the man, 2.0meter for the woman

128. a. zero

b. 4.0m0 (it is an alpha particle)
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MODEL EXAM

1. Motion of a hydrogen atom. A hydrogen atom, consisting of a
proton and an electron, is located between oppositely-charged metal
plates. The proton is acted on by an electric force of 5 × 10−14N
upward due to the charged plates, and by the electric force of 2×10−9N
downward due to the electron. The electron is acted on by an electric
force of 5 × 10−14N downward due to the charged plates, and by an
electric force due to the proton. No other forces act on these particles.

a. What is the total external force on the system consisting of the
proton and the electron in this hydrogen atom?

b. What is the total internal force on this system?

c. Is the momentum of this system conserved? If not, briefly explain
why not.

2. Impact of a ball with a sidewalk. A girl throws her 0.1 kg ball
vertically downward to see how well it bounces off the sidewalk. Just
before it hits the walk, the ball has a velocity of 6m/s downward. Just
after its impact with the walk, the ball has a velocity of 4m/s upward.
We shall assume that during the impact, which lasts 0.01 second, the
total external force on the ball is constant.

a. What is the change in the ball’s momentum during the impact?

b. What is the total external force on the ball during the impact?
(Since other forces are negligible, this is the force exerted on the
ball by the sidewalk.)
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Brief Answers:

1. a. zero or 0 or ~0

b. zero or 0 or ~0

c. If answer (1) is zero, yes

If answer (1) is not zero, no, because external force not zero

2. a. 1 kgm/s upward

b. (1× 102 or 100)N upward
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