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STANDING WAVES

by

J. S. Kovacs, Michigan State University

1. Introduction

1a. Properties of Running Waves. The velocity of a wave prop-
agating through an elastic medium depends only upon properties of the
medium itself,1 and not upon properties of the externally induced vi-
brations which produce the wave. As an example, if you shake one end
of a very long horizontally stretched string up and down, you can set
up waves which travel down the length of the string with the stretched
string’s single characteristic velocity but with any wavelength you wish.
Any wavelength can be made to travel along this “open” string (of infi-
nite length) depending upon the driving frequency. Now if the string is
of finite length, the waves, upon reaching the other end, undergo a re-
flection and travel back toward the source of the waves at the other end
of the string. The superposition of these to-and-fro waves gives rise to
destructive and constructive interference.

1b. Standing Waves and Normal Modes. For certain frequencies
of excitation of a particular string, traveling waves will cease as standing
waves set in. The frequencies at which this happens are called the strings
“normal modes.” For frequencies other than the normal mode frequencies,
the propagating wave and its reflections produce an irregular motion of
the string. Only the individual normal modes, or combinations of them,
can be transversely excited and maintained on a string of finite length.
This is the basis for the tuning of stringed instruments. Similar standing
wave phenomena account for the excitation of only the characteristic fre-
quencies of longitudinal sound waves in musical wind instruments, such
as organ pipes.

1c. Effect of Boundary Conditions. The discrete (as opposed to
continuous) nature of the possible frequencies for sustaining standing

1This is true at least for idealized systems which satisfy the classical wave equation.
For example, the differential equation that describes transverse motion of a perfectly
flexibly string is:

∂2ξ/∂t2 = (T/µ) (∂2ξ/∂x2) .

Here T is the tension under which the string is held, µ is its mass per unit length,
and the ratio T/µ is the square of the wave velocity. See “The Wave Equation and Its
Solutions” (MISN-0-201).
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waves on a string (or in a pipe) is attributed to the conditions that must
be satisfied at the boundaries of the string (or pipe). The possible en-
ergy levels of atomic systems also have a discrete spectrum, instead of a
continuous spectrum. The boundary conditions that must be satisfied by
the solutions to such atomic problems can be seen to be the explanation
of this discrete (quantized) spectrum.2

2. Standing Waves on a String

2a. Oppositely-Directed Waves Add Linearly. The solutions
to the one-dimensional wave equation describing transverse waves on a
stretched string allow for traveling waves moving in both directions along
the string. A function f(x−vt) describes a wave form propagating in the
positive x-direction with velocity v, and f(x+vt) describes one propagat-
ing in the negative x-direction.3 One, or any linear combination of them,
is a solution of:

∂2ξ

∂t2
= v2 ∂

2ξ

∂x2
, (1)

independent of what the functional form “f” is. As the simplest case,
the form could be that of a sine (or a cosine) function. Such a sine
wave represents the propagation of a single frequency (and hence single
wavelength) wave along the string. The expression

ξ(x, t) = ξ0 sin k(x− vt) = ξ0 sin(kx− ωt) , (2)

represents a wave of transverse displacement from equilibrium traveling to
the right.4 It satisfies Eq. (1) above and is a function of x− vt. If, at the
same time, there were another wave traveling to the left, the resultant
displacement from equilibrium at coordinate x at time t would be the
superposition or the sum of the displacements due to the individual waves.
Let’s take the case where the two waves have amplitudes ξ0 and ξ′0, and
the same frequency. The superposition is

ξ(x, t) = ξ0 sin(kx− ωt) + ξ′0 sin(kx+ ωt) , (3)

2This is developed and applied in MISN-0-242 and MISN-0-245.
3The shape of the wave form is determined by the function form f of the composite

variables x− vt or x+ vt. See “The Wave Equation and Its Solutions” (MISN-0-201).
4Here ξ0 is the amplitude of the wave (the maximum transverse displacement from

equilibrium), k is 2π times the reciprocal of the wavelength, and ω is 2π times the
frequency. These are the same as defined in MISN-0-201.
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which can be written as5

ξ(x, t) = (ξ0 + ξ′0) sin kx cosωt+ (ξ′0 − ξ0) cos kx sinωt . (4)

2b. Reflection Produces Oppositely Directed Waves. How can
we generate waves which have the functional form of Eq. (4)? If a very
long string is oscillated at one end (the other end is assumed to be an
infinite distance away from the point of excitation), waves travel in one
direction only, away from the oscillating end. If, however, the string is
of finite length, the wave upon arriving at the far end will, in general,
undergo a reflection, producing a traveling wave directed opposite to the
incident one. Under steady state conditions, the two waves travel along
the length of the string simultaneously, producing the wave form described
by Eq. (4).

2c. Boundaries Determine the Possible Wavelengths. The su-
perposition of the sinusoidal waves moving in the two directions along
the string, as represented by Eq. (3) or Eq. (4), appears to have three free
variables: the amplitudes ξ0 and ξ′0 and the angular frequency ω.6 You
should be able to externally control the values of these parameters. The
value of ω is determined by the frequency of transverse oscillation imposed
at the input end of the string.7 The amplitude ξ0 is also determined by
this input signal. The other amplitude ξ′0, however, is determined by the
condition that for all times t the displacement of the string from its equi-
librium position at the input end of the string (take this to be at x = 0)
should be zero. According to Eq. (4),

ξ(0, t) = (ξ′0 − ξ0) sinωt , (5)

and this will be zero for all t only if ξ′0 = ξ0. With that boundary condi-
tion, Eq. (4) is modified to:

ξ(x, t) = 2ξ0 sin kx cosωt . (one end fixed) (6)

The effect of this boundary condition is not a trivial one. Eq. (6) doesn’t
describe a traveling wave. Each point x on the string oscillates up and
down with frequency ν (equal to ω/2π). The amplitude of oscillation
varies from point to point, the amplitude at x being 2ξ0 sin kx. Note also

5Using the trigonometric relations: sin(A±B) = sinA cosB ± cosA sinB .
6The quantity k is related to ω through the fixed velocity of the waves along the

string. Because k = 2π/λ, ω = 2πν, and λν = v, we have that ω = vk.
7ξ0 is essentially determined by the energy introduced at the input end. See MISN-

0-203 for the relationship between the energy in a wave and its amplitude.
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that all points oscillate in phase: the displacement at all points goes to
zero at the same time (when ωt is an odd multiple of π/2) and has its
maximum value at all points at the same time (when ωt is an integer
multiple of π). These are standing waves as contrasted with the traveling
waves which travel down the length of the “open” string when one end is
excited.

2d. Second Boundary Condition: Restricted Frequencies.
There is another boundary, the other end of the string, which also imposes
a condition on the wave form, Eq. (6). If, for example, the other end at
coordinate x = L is also held fixed at the equilibrium position, this adds
the restriction that

ξ(L, t) = 0, for all t . (7)

Setting ξ0 equal to zero would satisfy this condition but it would result in
the trivial uninteresting solution that ξ(x, t) is zero for all x at all times
t. The only other variable parameter is k. The quantity sin kx, evaluated
at x = L, will be zero only for certain values of k. Those are given by:

sin kL = 0 when kL = integer multiple of π , (8)

or, with k = 2π/λ,

2L = nλ, n = 1, 2, . . . . (9)

This restricts the possible wavelengths of standing waves on the string
(only those wavelengths for which an integer multiple is twice the string’s
length). This thus restricts the possible frequencies of excitation with
which standing waves can be set up in a string which is fixed at the
equilibrium position at both ends.

νn =
nv

2L
, n = 1, 2, . . . . (both ends fixed) (10)

where v is the wave velocity for waves along the string. Help: [S-1]

For example, the lowest frequency of standing wave that can be set
up on a 25 cm string of mass 10 gm clamped at both ends and held under a
tension of 100N is 100Hz. Other possible frequencies are integer multiples
of this fundamental frequency, namely 200Hz, 300Hz, 400Hz, . . . , etc.
Note that the fundamental mode corresponds to the case where exactly
one-half wavelength fits between the fixed ends of the string. Other modes
have a full wavelength, one and a half wavelengths, two wavelengths, etc.
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Figure 1. A stretched string connects a fixed point and a
ring that can slide frictionlessly on a transverse rod.

2e. Other Conditions, Other Characteristic Frequencies. The
characteristic frequencies that can excite standing waves along a string are
determined by the physical boundary conditions. The set of frequencies
as expressed by Eq. (10) above are characteristic of a string with both
ends fixed. Another set of boundary conditions gives rise to a different
set of characteristic frequencies. For example, if at the end x = L the
string is attached to a ring on a vertical frictionless rod (instead of being
fixed), then this end is free to move up and down (see Fig. 1).

Furthermore, because the rod is frictionless, it cannot exert a vertical
force on the ring and hence the ring cannot exert a vertical force on the
string at the point of connection. Consequently, the tension in the string
at x = L must at all times be directed horizontally. A segment of flexible
string, however, aligns itself along the direction of the net force on it. The
alignment of the string at x = L thus is at all times horizontal, its slope is
always zero. This condition combined with the condition that the x = 0
end is fixed, yields the result that the characteristic frequencies are:

νn =
(2n− 1)v

4L
; n = 1, 2, . . . . Help: [S-2] (11)

For example, for the string described after Eq. (10), if the end x = L is
attached to such a frictionless ring, the fundamental frequency is 50Hz,
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x

x = 0 x = L

Figure 2. First overtone for standing waves on a string
fixed at both ends.

corresponding to the case where the length of the system is a quarter
wavelength of the wave as illustrated in Fig. 1.

2f. Nodes for Characteristic Frequencies. The normal modes of
excitation for a string, of length L, fixed at both ends have the character-
istic frequencies given by Eq. (10). For the second frequency of excitation,
usually called the first overtone,8 the length of the string L is exactly equal
to the wavelength associated with that frequency. According to Eq. (6),
the displacement from equilibrium at points x for any t is for the n = 2
mode given by:

ξ(x, t) = 2ξ0 sin

[

2π

L
x

]

cosωt . (12)

This satisfies the boundary condition that for all times t the points
x = 0 and x = L have zero displacement from equilibrium. These non-
moving points are called “nodal points” or “nodes.” However, for this
mode of excitation, the point x = L/2, the midpoint of the string, is also
a node (see Fig. 2). If this point were also held fixed (along with x = 0
and x = L), this mode of standing wave could still be excited. The mode
n = 1 could not be, nor could any mode which did not produce a node
at x = L/2. Those modes which could be excited if the midpoint were

8The fundamental frequency is also called the first harmonic because it is the first
member of a harmonic series. The second frequency is called the second harmonic or
first overtone, etc, Help: [S-3] .
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clamped are those with characteristic frequencies,

νn =
nv

2L
; n = 2, 4, 6, . . . . (13)

3. Longitudinal Standing Waves

3a. Comparison to Transverse Waves. The differential equation
satisfied by longitudinal displacement waves in one dimension is the same
as for transverse waves, Eq. (1). The difference is in physical interpre-
tation.9 The longitudinal-wave solutions to Eq. (1), therefore, have a
similar mathematical structure and, if the physical conditions are right,
standing waves as represented by Eq. (6) can be established in such sys-
tems. This phenomenon is impressively illustrated in wind instruments
such as organ pipes. Sound waves excited at one end of such pipes prop-
agate to the other end and upon reflection interfere with the initial wave.
Again, standing waves can be established for only certain characteristic
frequencies of waves. These characteristic frequencies are determined by
the length of the pipe and whether the boundary conditions force a node
or an antinode10 at each of the two ends.

3b. Open-End and Closed-End Pipes. The physical conditions
that determine whether there is a node or an antinode at the end of a
pipe are similar to the corresponding conditions for a node or antinode
at the ends of a string (Sect. 2). A node will occur when the end of the
pipe is closed, so that the displacement from equilibrium of an element
of the medium—the air—is constrained to be zero at all times. On the
basis of arguments, similar to those for which Fig. 1 is an illustration in
the case of transverse waves on a string, an antinode will occur at the end
of a pipe if it is open.11 Figure 3 illustrates the amplitude distribution

9For longitudinal compressional waves, such as sound waves, the displacement from
equilibrium ξ(x, t) of an element of the medium is in the same direction that the wave
propagates. The velocity of the wave, of course, depends upon different elastic and
inertial properties of the medium than in the case of waves on a string. See “Sound
Waves and Transverse Waves on a String” (MISN-0-202).

10A node is a point with zero displacement from equilibrium at all times. An antinode
is a point of maximum displacement—but varying sinusoidally with time. Figure 1
illustrates the boundary condition that produces an antinode at one end of a string
with standing waves.

11For a more detailed argument refer to Section 5.3, pp. 240-241 of Waves, the
Berkeley Physics Course, F. S. Crawford, Jr., McGraw-Hill (1965). Also, the antinode
at the end of an open pipe really occurs (1/3) of the pipe’s diameter outside the open
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(a) (b)

Figure 3. The amplitude distribution for standing sound
waves in: (a) a pipe closed at one end and open at the other;
and (b) a pipe open at both ends.

for one of the normal modes for standing waves in each case: (a) a pipe
closed at one end and open at the other; and (b) a pipe open at both
ends. Help: [S-4] In each case it is not the fundamental mode but the
first overtone that is illustrated. Note that in case (a) the overtones, the
tones that actually occur, are not consecutive members of the harmonic
series. For this system, the first, second, third. etc., overtures are the
third, fifth, seventh, etc., harmonics. The system illustrated in case (b)
exhibits all harmonics.

Acknowledgments
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the National Science Foundation, Division of Science Education Devel-
opment and Research, through Grant #SED 74-20088 to Michigan State
University.

Glossary

• anti-node: a position along the medium where a standing wave shows
maximum oscillation as time progresses.

• boundary condition: for a wave function, a requirement that it
have some particular value at some point in space for all times. The
requirement represents on a physical restraint that has been placed on
the medium.

end. Thus the effective length of a pipe with an open end is (1/3) diameter longer
than the physical length. For the purposes of this module we will assume the effective
length is the physical length or that the diameter of the pipe is very much smaller than
any wavelength of interest.
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• characteristic frequency: for a system, any of the normal-mode
frequencies.

• fundamental frequency: for a system, the lowest normal-mode
frequency.

• fundamental mode: for a system, the normal mode having the
lowest frequency.

• harmonic series: for a system, the set of frequencies that are integer
multiples of the system’s fundamental frequency. The lowest-frequency
harmonic, the fundamental-mode frequency, is called the “first har-
monic,” the next highest is called the “second harmonic,” etc. Not all
of the system’s harmonic-series frequencies need occur in the system’s
actual normal-mode frequencies.

• longitudinal wave: a wave whose oscillation is in the direction of
the wave’s direction of motion. Sound waves are longitudinal waves.

• node: a position along the medium where a standing wave shows zero
oscillation at all times.

• normal mode: for a wave function, a physical situation in which a
standing wave occurs with a single frequency of oscillation. For one
system, different frequencies can occur under different stimuli of the
medium. Such different oscillations are called different normal modes
of the system. The collection of all such possible modes are called t“the
system’s normal modes.”

• overtone: for a system, any normal-mode frequency other than the
lowest one. The lowest-frequency overtone is called the “first overtone,”
the next highest the “second overtone,” etc.

• running wave: a wave for which crests (for example) travel past
any given location as they move along the medium. Thus successive
photographs of the medium show a wave moving along it.

• standing wave: a wave which does not move along the medium.
Successive photographs of the medium show a stationary wave oscillat-
ing “in place.” This means that at some positions, called “nodes”, the
standing wave never varies from zero as time progresses. At all other
positions it varies smoothly from a crest to zero to a trough to zero to a
crest, etc, as time progresses. At positions half-way between nodes, the
crests and troughs are a maximum and these are called “anti-nodes.”

13
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• transverse wave: a wave whose oscillation is at right angles to the
wave’s direction of motion. String waves and light waves are transverse
waves.

• travelling wave: a wave for which crests (for example) travel past
any given location as they move along the medium. Thus successive
photographs of the medium show a wave moving along it.

14
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PROBLEM SUPPLEMENT

v = (T/µ)1/2

Note 1: Work these problems in order, completing each one successfully
before going on to the next.

Note 2: Problems 5 and 8 also occur in this module’s Model Exam.

1.

L

A stretched steel wire, 75.0 cm long, is fixed at both ends to perfectly
reflecting walls. The wire is under a tension of 3.00× 102 N and has a
mass of 0.625 gm.

a. Calculate the velocity of propagation of any transverse wave existing
on this wire. Help: [S-9]

b. Taking one fixed end as x = 0 and the other as x = L, apply the
boundary conditions of requiring a node at both ends to determine
the wavelengths of the fundamental and the first and second over-
tones. Sketch the amplitude distributions of these three normal
modes.

c. Compute the corresponding frequencies of these normal modes and
determine whether or not they form a series of harmonics. If so
label each accordingly. Help: [S-10]

2. Suppose the sketched wire in Problem 1 is clamped at its midpoint,
thus requiring a node to exist there.

a. Apply these new boundary conditions to determine the wavelengths
of the first three normal modes. Again, sketch the amplitude dis-
tributions. Help: [S-5]

b. Determine the frequencies of these three normal modes and whether
or not they form a series of harmonics. If so, label them as in
Problem 1.

15
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3.

x = 0 x = 0.25m x = 0.75m

Now suppose the wire in Problem 1 is clamped 1/3 of the way from
the end x = 0, as illustrated in the sketch. Repeat parts (a) and
(b) of Problem 2 with this new set of boundary conditions, namely
that any normal modes must possess nodes at x = 0, x = 0.25m and
x = 0.75m. Help: [S-5]

4.

0.75m

Replace one of the fixed ends of the steel wire in Problem 1 with a
frictionless ring on a rod, so that a node always occurs at the left end
and an antinode always occurs at the right end. Assuming all other
conditions remain the same (tension in the wire, mass per unit length
of the wire), repeat parts (a) and (b) of Problem 2 with this set of
boundary conditions.

5.

x = 0 x = 0.50m x = 0.75m

Now suppose the wire in Problem 4 is clamped 0.25m from the free
end, as illustrated in the sketch. Repeat parts (a) and (b) of Problem 2
with this set of boundary conditions (nodes at x = 0 and x = 0.50m
and an antinode at x = 0.75m). Help: [S-5]

16
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6.

1.50m

An organ pipe, 1.50m long, is closed at one end and open at the other.
Thus for whatever standing wave patterns that are excited in the pipe,
a node must occur at the closed end and an antinode must occur at
the open end.

a. Calculate the speed of sound waves in air at 20 ◦C. Use M =
28.8 gm/mole and γ = 1.40 for air, and R = 8.31 J/(moleK) is
the ideal gas constant. Help: [S-8]

b. Use the boundary conditions to determine the wavelengths of the
fundamental and the first and second overtones. Sketch the air
pressure amplitude distribution of these three normal modes.

c. Compute the corresponding frequencies of these three normal modes
and determine whether or not they form a series of harmonics. If
so label each accordingly.

7. Replace the organ pipe of Problem 6 with a pipe of equal length but
open at both ends. This condition requires that an antinode occur at
both ends of the pipe for any standing wave. Assuming all external
conditions remain the same;

a. Apply the boundary conditions to determine the wavelengths of
the first three normal modes and sketch the air pressure amplitude
distributions. Help: [S-6]

b. Compute the corresponding frequencies and label them as harmon-
ics.

8. A hole is drilled in the pipe of Problem 7 halfway from either end, thus
imposing antinode at the midpoint of the pipe for any allowed normal
mode. Repeat parts (a) and (b) of Problem 7 for this new system.

17
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Brief Answers:

1. a. v = 600m/s

b. kL = nπ , n = 1, 2, 3, . . .

Fundamental:

λ = 2L = 1.50m

L

First Overtone:

λ = L = 0.75m

L

Second Overtone:

λ = 2/3L = 0.50m

L

c. Fundamental: ν = 400Hz (1st Harmonic)

First Overtone: ν = 800Hz (2nd Harmonic)

Second Overtone: ν = 1200Hz (3rd Harmonic)

2. a. k L/2 = nπ , n = 1, 2, 3, . . .

Fundamental:

λ = L = 0.75m

L

clamp

First Overtone:

λ = 1/2L = 0.375m

L

clamp

Second Overtone:

λ = 1/3L = 0.25m

L

clamp

18
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b. Fundamental: ν = 800Hz (1st Harmonic)

First Overtone: ν = 1600Hz (2nd Harmonic)

Second Overtone: ν = 2400Hz (3rd Harmonic)

3. a. k
L

3
= nπ, n = 1, 2, 3, . . .

Fundamental:

λ = 2/3L = 0.5m

L

clamp

First Overtone:

λ = 1/3L = 0.25m

L

clamp

Second Overtone:

λ = 2/9L = 0.166m

L

clamp

b. Fundamental: ν = 1200Hz (lst Harmonic)

First Overtone: ν = 2400Hz (2nd Harmonic)

Second Overtone: ν = 3600Hz (3rd Harmonic)

4. a. kL =
π

2
,
3π

2
, . . . , (

2n− 1

2
)π, for n = 1, 2, 3, . . .

Fundamental:

λ = 4L = 3.00m

L

First Overtone:

λ = 4/3L = 1.00m

L

Second Overtone:

λ = 4/5L = 0.60m

L

19
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b. Fundamental: ν = 200Hz (1st Harmonic)

First Overtone: ν = 600Hz (3rd Harmonic)

Second Overtone: ν = 1000Hz (5th Harmonic)

(Note that for this set of boundary conditions that even harmonics
do not exist.)

5. a. k 2L/3 = nπ , n = 1, 2, 3, . . .

Fundamental:

λ = 4/3L = 1.00m

L

clamp

First Overtone:

λ = 4/9L = 0.33m

L

clamp

Second Overtone:

λ = 4/15L = 0.20m

L

clamp

b. Fundamental: ν = 600Hz (1st Harmonic)

First Overtone: ν = 1800Hz (3rd Harmonic)

Second Overtone: ν = 3000Hz (5th Harmonic)

(Again note that for this set of boundary conditions only odd har-
monics are present.)

6. a. v = 344m/s

b. kL =
π

2
,
3π

2
, . . . (

2n− 1

2
)π, for n = 1, 2, 3, . . .

Fundamental:

λ = 4L = 6.00m

L

First Overtone:

λ = 4/3L = 2.00m

L
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Second Overtone:

λ = 4/5L = 1.20m

L

c. Fundamental: ν = 57.3Hz (1st Harmonic)

First Overtone: ν = 172Hz (3rd Harmonic)

Second Overtone: ν = 286.7Hz (5th Harmonic)

(Note that this system is entirely analogous to the stretched string
in Problem 4; the boundary conditions are the same.)

7. a. k L = nπ , n = 1, 2, 3, . . . . Help: [S-6]

Fundamental:

λ = 2L = 3.00m

L

First Overtone:

λ = L = 1.50m

L

Second Overtone:

λ = 2/3L = 1.00m

L

b. Fundamental: ν = 114.7Hz (1st Harmonic)

First Overtone: ν = 229.3Hz (2nd Harmonic)

Second Overtone: ν = 344Hz (3rd Harmonic)

8. a. k(
L

2
) = nπ, n = 1, 2, 3, . . .

Fundamental:

λ = L = 1.50m

L

antinode
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First Overtone:

λ = L/2 = 0.75m

L

antinode

Second Overtone:

λ = L/3 = 0.50m

L

antinode

b. Fundamental: ν = 229.3Hz (1st Harmonic):

First Overtone: ν = 458.7Hz (2nd Harmonic)

Second Overtone: ν = 688Hz (3rd Harmonic)
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-2d)

Avoid memorizing specific formulae for normal mode frequencies since
there are so many, essentially one for each set of boundary conditions.
Rather, apply the boundary conditions for the particular problem at
hand to Eq. (6) and derive a unique formula for the characteristic fre-
quencies, just as was done for the case of a stretched string fixed at both
ends, resulting in Eq. (10).

S-2 (from TX-2e)

At x = 0: sin kx = 0, regardless of k.
At x = L, sin kL = 1 since the string may experience its maximum
displacement at this point: ξ = (2ξ0 sin kL) cosωt .
The amplitude of the standing wave is 2ξ0 sin kL. What values of kL
(in radians) will yield a value of 1 for sin kL?

S-3 (from TX-2f)

For a set of discrete characteristic frequencies corresponding to the nor-
mal modes of standing waves in any system, the lowest allowed frequency
is always be called the “fundamental” frequency. The next highest al-
lowed frequency is called the “first overtone,” followed by the “second
overtone,” “third overtone,” etc. If these overtones can be expressed as
an integer, n, times the fundamental frequency, ν0, i.e. νn = n ν0, then
the normal modes are said to constitute a series of “harmonics,” where
νn is the nth harmonic. The correspondence between overtones and
harmonics is not fixed since in certain systems some harmonics are not
allowed by the boundary conditions. Help: [S-7]

S-4 (from TX-3b)

The illustration of the amplitude distribution for standing waves in pipes
depicted in Fig. 3 is not intended to be a literal picture of what you would
see in an organ pipe. Rather it relies on an analogy with the standing
wave patterns set up in stretched strings.
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S-5 (from PS-problems 2, 3, 5)

Remember that only normal modes which naturally have a node
at the position of the clamp satisfy the boundary conditions,
hence are the only ones that can exist. Furthermore there are
regular spacings between nodes and antinodes: 1/2 wavelength
between adjacent nodes, 1/2 wavelength between adjacent antin-
odes, and 1/4 wavelength between adjacent nodes and antinodes.

antinodes

no
de

nodenode
¼l ¼l¼l ¼l

S-6 (from PS-problem 7)

x = 0 x = L
x

y

Since antinodes occur at both ends of an open pipe (x = 0 and x = L),
the original waves must be represented by functions which do not cancel
automatically at x = 0. Since the waves are sinusoidal, cosine functions
may be used as well as sine functions to fulfill the above condition:
ξ = ξ1 + ξ2 = ξ0 cos(kx − ωt) + ξ0 cos(kx + ωt) = 2ξ0 cos kx cosωt.
This equation for the standing wave does not yield a node at x = 0. It
satisfies the boundary conditions of the system at hand.

S-7 (from [S-3])

For example, the first overtone in the case of the string fixed at both
ends is also the 2nd harmonic, but for a string fixed at one end and free
at the other, the first overtone becomes the 3rd harmonic (work through
the allowed frequencies established by Eq. (10) and Eq. (11) to convince
yourself of this). Furthermore, some systems do not exhibit harmonics
at all since the overtones cannot be expressed as integral multiples of
the fundamental.
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S-8 (from PS-problem 6)

The speed of sound is related to the given quantities in Sound Waves
and Small Transverse Waves on a String, MISN-0-202, Sect. 5d.

S-9 (from PS-problem 1a)

If you don’t know how to get the velocity from the given quantities, you
failed to learn it in a prerequisite module (see the Input Skills in this
module’s ID Sheet). It is also possible to recall how to do it as you
read the text of this module. As you work with the numbers, make sure
you convert all quantities to the proper SI units (m, kg, s) and do units
algebra using, if necessary, N = kgm/s2.

S-10 (from PS-problem 1c)

If you don’t know how to get frequency from the other quantities, you
failed to learn it in a prerequisite module (see the Input Skills in this
module’s ID Sheet).
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MODEL EXAM

v = (T/µ)1/2

1. See Output Skill K1 in this module’s ID Sheet.

2.

x = 0 x = 0.50m x = 0.75m

A stretched steel wire, 75.0 cm long, is fixed at one end to a perfectly
reflecting wall. The other end is attached to a ring that can slide
frictionlessly on a transverse rod, so this end is said to be “free.” The
wire is under a tension of 3.00×102 N and has a mass of 0.625 gm. The
wire is clamped 0.25m from the free end, as illustrated in the sketch.

a. Determine the wavelengths of the first three normal modes. Sketch
the amplitude distributions.

b. Determine the frequencies of these three normal modes and deter-
mine whether or not they form a series of harmonics. If they do,
label them properly.

3. An organ pipe, 1.50m long, is open at both ends. The temperature of
the air is 20 ◦C. A hole is drilled halfway between the ends.

a. Determine the wavelengths of the first three normal modes and
sketch the air pressure amplitude distributions.

b. Compute the corresponding frequencies and label them as harmon-
ics.
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Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 5.

3. See this module’s Problem Supplement, problem 8.
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